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Abstract. The total impedance of samples with electrodes exhibiting only partial contact ( porous electrodes) is

investigated using the ®nite element method in three dimensions. Emphasis is put on porous electrodes built up of

arrays of small perfect contacts. An equivalent circuit to analyze the impedance spectra is put on a ®rm basis

enabling the reliable determination of bulk properties of ``imperfectly'' contacted samples. Approximations are

given to estimate the contact geometry impedance. The results are also applicable to other imperfect contact

problems as occurring at grain boundaries.
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1. Introduction

In electroceramics electrode contacts are frequently

laterally inhomogeneous, e.g., porous. In some cases

these porosities are introduced deliberately as in the

case of solid oxide fuel cells. The gas exchange which

is essential to operate the cell is ensured by the three

phase contacts of the porous electrode geometry.

As a consequence, most investigations of gas ex-

change reactions (e.g., incorporation of oxygen in

oxides, incorporation of hydrogen in protonic conduc-

tors) concentrate on porous electrodes (see e.g., [1±

15]). On the other hand the porosity of electrodes may

be an undesired property. Frequently only parts of the

electrodes exhibit an intimate contact with the sample

while other parts of the sample surface are separated

from the electrode by an insulating gap due to

insuf®cient preparation or insuf®cient wetting proper-

ties. A typical example would be a metal foil

mechanically pressed onto the sample: a perfect ®t

of sample and electrode morphology will usually not

be achieved. The particles of paste-electrodes may

give rise to a similar contact geometry and even

evaporated or sputtered electrodes often agglomerate

at higher temperatures and form ``islands'' leaving

some parts of the surface uncoated (see e.g.,

[9,10,16]).

A main feature of all these electrodes with laterally

inhomogeneous contacts is the frequency-dependence

of the current carrying electrode area. An applied dc-

voltage leads to a current constriction close to the

reversible areas while displacement currents at higher

frequencies also include the electrode regions without

reversible contact. Thus porous electrodes in¯uence

not only the dc-conductivity compared to a homo-

geneous contact but also the shape of the impedance

spectra. The reversible area for dc-current is in some

cases given by the contacted electrode regions while

frequently complicated reaction mechanisms (e.g.,

O2-incorporation in YSZ) are involved leading to a

very restricted reversible region close to the three-

phase boundary.

There are numerous experiments (e.g., [1±14])

investigating the electrode impedance of porous



electrodes, especially at three-phase-boundaries. Yet,

although the electrode impedance of such porous

electrodes is characterized by the interplay of

constriction resistance and ``real'' electrode polariza-

tion only little attention has been paid to the problem

in how far the current constriction in¯uences the

impedance. In [15] the dc resistance of electrodes

with active spots or stripes has been investigated using

an electrolytic tank. Thus it could be demonstrated

quantitatively how the total resistance depends on the

geometry of the porous electrode. Furthermore it

could be concluded that a part of the electrode

polarization of a Ag, O2jYSZjO2, Ag cell is due to

current constriction. In [5] the polarization of Au-

electrodes on YSZ was examined using an analytical

solution for the dc resistance between two electrodes

each built up by an array of square contacts. It could

be shown that the measured resistance ®ts nicely to

the resistance obtained from these calculations and the

entire polarization can be attributed to geometrical

effects. The role of active points for the time

dependent dissolution of Li at the LijLi3N inter-

face and the potential distribution was considered in

[17]. An intuitive equivalent circuit model for

imperfect (``porous'') electrodes is presented in

[17,18].

The problem of porous electrodes is very much

related to the situation at grain boundaries in

electroceramics. Such grain boundaries could also

exhibit both permeable (conducting) regions and

insulating parts with respect to current perpendicular

to the boundary (island model). They may be

constituted e.g., by air gaps ( pores), amorphous

layers, segregated phases or lattice mismatch. In the

case of an alternation of insulating and conducting

regions the situation is similar to a porous electrode

problem. With respect to grain boundary resistances a

large number of publications (e.g., for ZrO2 and CeO2

[19±31], AgCl [32]) exist in the literature. Frequently

two semicircles in the complex impedance plane are

observed, the high frequency semicircle being

attributed to the bulk and the second one to grain

boundaries. The two resistances often exhibit similar

activation energies [22,26±30] and as a reason for this

fact imperfect contacts between the grains have been

discussed. There are semi-quantitative models

[19,20,24,26,27,33±36] to justify this explanation

and to enable a correct interpretation of the spectra.

However, an exact calculation of the resulting

impedance by solving the underlying differential

equation and thus providing a founded interpretation

of the spectra is still missing.

Further cases exhibiting laterally inhomogeneous

contacts are found in the expanding ®eld of

composites as e.g., cermets used as anodes in SOFC

or heterogeneously doped ionic conductors (e.g.,

Al2O3-AgCl-composites). In the latter case again

two semicircles in the complex impedance plane are

frequently observed [37].

For all experiments with laterally inhomogeneous

contacts a founded estimation of the in¯uence of the

contact geometry not only on the dc resistance but on

the ac impedance also, would be helpful in order to

avoid errors caused by current constriction.

Furthermore, the question arises in how far electrical

properties can be obtained reliably when ``imperfect''

contacts are present. Two-dimensional calculations on

the in¯uence of imperfect contacts on the impedance

based solely on Maxwell's equations were given by

the authors in [38,39]. As a main result of these ®nite-

element-simulations the occurrence of a second

relaxation time (second semicircle in the complex

impedance plane) exclusively due to the existence of

laterally inhomogeneous contacts could be proved.

However, a quantitative investigation of a realistic

three-dimensional problem is still missing.

Such a three-dimensional investigation is pre-

sented in this contribution. We restrict ourselves to

the case of an electrode with laterally inhomogeneous

contact and a reversible two-phase-boundary. For the

sake of simplicity we neglect all additional electrode

polarization processes and emphasize the interplay of

morphology and impedance. Two-dimensional calcu-

lations on porous electrodes including a polarization

impedance are given in [40]. The geometrical and

materials parameters will be varied over a wide range

to estimate the in¯uence of electrode morphology on

the overall impedance and to show how experiments

exhibiting current constriction effects should be

analyzed.

2. Theoretical and Computational
Considerations

Equivalent circuits are useful tools to analyse

impedance spectra of materials with regions of

different electrical properties as long as the interfaces

are parallel to the electrodes (quasi-one-dimensional

case). However there is a fundamental problem if
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simple equivalent circuits are applied to specimens

exhibiting inhomogeneities in electrical properties not

only parallel to the electrodes but in arbitrary

direction. This problem is connected with inherent

assumptions which are made when parallel RC-

elements are used to represent sample regions. The

following necessary conditions have to be ful®lled if a

region is described by a parallel RC-element which

Fig. 1. Sketch to demonstrate the limit of equivalent circuits. (a) The two necessary conditions for a region being replaced by a RC-

element. (b) Inhomogeneous sample which can be described by a simple equivalent circuit. (c) Sample for which no simple equivalent

circuit is valid.
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solely depends on the geometry and the materials

parameters of this region (Fig. 1a):

(i) Two opposite surfaces of the region have to be

equipotential for all frequencies. (A parallel RC-

element is by de®nition between two points of

de®ned potential.)

(ii) The current density perpendicular to the other

surfaces has to vanish.

The replacement is possible e.g., for the quasi-one-

dimensional arrangement of two homogeneous phases

(Fig. 1b). However, it is not valid for the example

shown in Fig. 1c. A simple division of the sample into

regions represented by RC-elements is not allowed.

Neither are the surfaces F1 and F2 equipotential nor

are F3 and F4 without perpendicular current density.

This failure of relating regions of the sample to simple

equivalent circuits causes dif®culties to predict the

impedance of real inhomogeneous samples and to

relate the measured impedance to electrical and

geometrical properties.

Away out is the calculation of the exact impedance

via determining the exact potential distribution within

the sample [38]. This implies the numerical solving of

the underlying differential equation. As long as time-

dependent magnetic ®elds can be neglected, Poisson's

equation can be written in terms of a scalar electrical

potential F

div grad F�r; t� � ÿ 1

e
r�r; t� �1�

with e being the absolute dielectric constant and r the

charge density. It is well known that the charge

density r vanishes in the bulk. Space charges close to

interfaces we consider as a part of the interface

charge and neglect the diffuse character of space

charges. Thus Eq. (1) reduces to Laplace's equation

q2F
qx2
� q

2F
qy2
� q

2F
qz2
� 0 �2�

For an applied ac voltage U0eiot of angular frequency

o between the two electrodes the potential F within

the sample is given in complex representation by

F̂�r; t� � ĵ�r�eiot � jĵ�r�jei�ot�a�r�� �3�
provided the deviations from equilibrium are small

(linear regime). (The ``hat'' indicates complex

quantities.) In the following there are two reasons

for the potential being complex. First its phase

changes within the sample as a function of the space-

coordinate leading to a position-dependent complex

representation, and second the time dependence

which is written in a complex way using eiot. The

phase a�r� of the position-dependent potential ĵ�r�
should not be confused with the phase shift between

total current and applied voltage. The value of

a�r2� ÿ a�r1� describes the phase shift between the

potentials at two points r2 and r1.

In this contribution all surface (interface) poten-

tials are assumed to be independent of the current, i.e.

only the linear regime (small applied voltage) is

considered. Consequently without restriction of

generality, the surface potentials can be ignored in

the calculation of the impedance. Therefore the

following boundary conditions are used to calculate

the potential by solving Laplace's equation for ĵ�r�:
(i) Electrode/sample contact: the contacted parts of

the solid electrolyte are set on the same potential

as the electrodes (0 and U0eiot respectively).

(ii) Free sides of the solid electrolyte are without

normal current density: grad ĵ ?n � 0, where n is

the normal vector of the relevant side.

(iii) Solid electrolyte/insulator interface: the conti-

nuity of the normal component of the complex

current density must be warranted:

k̂bulk grad ĵbulk?n � k̂gap grad ĵgap?n �4�

The index gap indicates the insulating phase. The

complex conductivity k̂ is de®ned by

k̂ � s� ioe �5�
with s being the electrical conductivity. Eq. (4) can

be derived by combining Poisson's equation (Eq. (1))

and the continuity equation for the Faraday current

density (total current density minus displacement

current density, i.e., true conducting current den-

sityÐs grad F̂)

div�s grad F̂� � qr̂
qt

�6�

using Eq. (3) and integrating over the surface of a

thin volume element at the phase boundary. For the

applied voltage U0eiot resulting in a total current

Î0eiot the complex impedance Ẑ between the two

electrodes can be calculated as

Ẑ � U0

Î0

�7�

with the current Î0 being given as the surface-integral
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Î0 �
�

s

ĵ ?dA �8�

of the complex current density

ĵ � ÿk̂ grad ĵ �9�
along an arbitrary cross-section of the sample S

which does not cross the electrodes. Once the

potential distribution ĵ�r� is known, the impedance

can be calculated for a given complex conductivity as

Ẑ � U0�
sÿk̂ grad ĵ ?dA

�10�

established contactsample

perfect electrode

basic element1/8 element for 
FE-calculation

h

b

b
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w
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Fig. 2. Geometry of the considered porous electrodes. (a) A sector of the sample with one porous electrode exhibiting only partial contact

(circles). (b) A basic element of this set-up. The porous electrode is lifted to illustrate the contacted region. (c) Cross section of the basic

element indicating the point diameter d and gap thickness w. (d) 1/8 of the basic element as used in the ®nite element calculations.
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By varying the frequency and thus the complex

conductivity, it is possible to simulate the entire

impedance spectrum for a given sample geometry.

We focussed onto a symmetrical prototype of

porous electrodes as sketched in Fig. 2: One electrode

(bottom electrode in Fig. 2) is assumed to be perfect,

i.e., without any electrode polarization, neglecting the

resistivity of the electrode material itself. The porous

electrode on top exhibits regions at which sample and

electrode are separated by an insulating gap (air gap,

pore). Since at the contacted regions all additional

polarization phenomena (e.g., charge transfer resis-

tance) are neglected, only the interplay of geometry

(morphology, porosity) and impedance is considered.

In order to reduce the number of geometrical

parameters, a constant gap thickness is assumed,

giving rise to a step-like arrangement (Fig. 2). Owing

to the symmetry of the basic element the three sides of

1/8 of the basic element (Fig. 2d) are without

perpendicular current density. Already such an

element contains the entire information of the

considered system.

For porous electrodes exhibiting very thin air gaps

(w5 (bÿ d), see Fig. 2c) a further simpli®cation is

possible. Instead of treating the air gap as an own

phase, it can be taken account of as a boundary

condition. As expected on the basis of an intuitive

picture and also proven by ®nite-element calculations,

the current within the thin gap ¯ows mainly

perpendicular to the boundary as long as the distance

between the considered region and the established

contact is much larger than the gap thickness. For

example, for a gap extended parallel to the xy-plane

(Fig. 2) the inequality jz4 jx, jy holds. Thus taking

account of Eqs. (2), (3) and (9) the problem reduces to

q2ĵgap

qz2
� 0 �11�

and the potential distribution within the insulating

gap is given as

ĵgap �
�ĵboundary ÿ U1�

w
z� U1 �12�

Therefore the knowledge of the potential at the phase

boundary between sample and gap ĵboundary is

suf®cient to calculate the potential distribution

within the gap. Using Eqs. (4), (12) and U1� 0 a

boundary condition for ĵboundary results as

k̂bulkn ? grad ĵboundary �
k̂gap

w
ĵboundary �13�

We compared the potential distributions within

samples with porous electrodes calculated via the

boundary condition (iii) (Eq. (4)) explicitly taking

account of the gap as a separate phase and those

calculated by using Eq. (13). As long as w5 (bÿ d) is

valid, a very slight difference is visible only in the

vicinity of the electrode step which is negligible for

the overall impedance. Most of the calculations in this

contribution were done using the boundary condition

Eq. (13) replacing boundary condition (iii) (Eq. (4)).

It is worth mentioning that according to Eqs. (9)

and (5) the current density can be written as the sum of

four terms

ĵ � ÿs grad ĵre � oe grad ĵim

ÿ i�s grad ĵim � oe grad ĵre� �14�
The real part of the current density as well as its

imaginary part is a linear combination of the two

vectors grad ĵre and grad ĵim. Thus they are neither

perpendicular to the equipotential lines of ĵre nor to

those of ĵim, and the total current density is no more

perpendicular to the equipotential lines of the

absolute value of the potential. Looking at the time

dependence of the current density vector ĵeiot one

recognizes that it rotates on an ellipse, the main axes

of which can be calculated from the real and

imaginary part of the current density. The current

lines are time-dependent and oscillate between two

limiting lines. Consequently, the current density at an

arbitrary point generally never vanishes. This is an

important difference compared to the one-dimen-

sional case in which for each frequency period the

current density vanishes twice. Only if grad ĵre and

grad ĵim have the same direction (e.g., at the

contacted parts of the porous electrode), no change

of the current density direction takes place and the

current density really vanishes twice a period.

The ®nite element method was applied to solve the

Laplace equation for ĵ�r� numerically within the

sample. For these simulations the FLUXEXPERT

system from DT2i 38240 Meylan, France has been

used. The complex current density ĵ and its integral

along a surface (e.g., the perfect electrode) could also

be obtained by this system. For displaying the

resulting potential and current distributions equi-

potential lines turned out to be more appropriate. In

this paper the equipotential lines of the absolute value
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of the potential
�������������������
ĵ2

re � ĵ2
im

p
are plotted. The

frequency dependent potential distribution and the

impedance of samples with one porous electrode (Fig.

2) were calculated for the following range of

geometrical (w/b, d/b, h/b) and electrical (sbulk, sgap,

sbulk, egap) parameters:

sbulk� 10ÿ 6 (Ocm)ÿ 1

sgap� 0 (Ocm)ÿ 1

sgap� e0� permittivity of vacuum

sbulk� (8±800) e0
w/b� 1/16±1/1600

h/b� 0.15±20

d/b� 1/20±1/1.4

For the complex nonlinear least squares ®ts of the

equivalent circuits to the ®nite-element results the

program ``equivalent circuit'' by B.A. Boukamp [41]

has been used.

3. Results and Discussion

Figure 3 illustrates the frequency-dependent potential

distribution in 1/8 basic element constituting the

sample with a porous electrode as sketched in Fig. 2.

The lines in Fig. 3 indicate lines of constant absolute

value of the electrical potential andÐas the complex

potential of the top electrode is set to zeroÐalso the

potential drop between the imperfect electrode and the

corresponding position within the sample. As already

shown in two dimensions [38,39] the main potential

Fig. 3. Equipotential-lines (absolute value of the compex potential) within a 1/8 basic element for ®ve different frequencies. The

parameters of the basic element are: h/b� 0.5, d/b� 0.1, w/b� 6.3� 10ÿ 4, ebulk� 8e0.
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drop at low frequencies occurs in a region around the

``point contact'' whilst at high frequencies the sample

behaves nearly as if both electrodes were ideal. This

frequency-dependent potential distribution naturally

results in an impedance spectrum which is different

from the spectrum of a perfectly contacted homo-

geneous sample (resistance in parallel to a capacitor).

Figure 4 shows the impedance obtained by the ®nite

element simulations (FE). Although only one proper

relaxation time exists in the material, namely the bulk

relaxation time tbulk� ebulk/sbulk, two different relaxa-

tion times occur in the spectrum. All the resulting

spectra can be ®tted nicely (Fig. 5) by the two

equivalent circuits given in Fig. 4. Even in the

``worst'' case (the error is larger for thin samples and

large points) the ®t differs only slightly from the

results of the exact ®nite element calculation (Fig.

5b). It is worth emphasizing that an impedance

Fig. 4. Impedance spectrum calculated by the ®nite element method (FE) and the corresponding ®t using one of the two possible

equivalent circuits I and II. The parameters used are: h� 100mm, d� 2mm, b� 20 mm, w� 0.13mm, sbulk� 10ÿ 6 1/(Ocm), ebulk� 8e0.
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according to two RC-elements is more or less

surprising. The interpretation of these elements is

not trivial as will be shown.

In the following, all resistances and capacitances

correspond to 1/8 of a basic element, i.e., the region

for which the potential distribution is calculated. The

impedance Zsample of a sample consisting of N basic

elements (N contacts) is just 1/(8N) times the

impedance calculated by using the region shown in

Fig. 3. Therefore all sample resistances Rsample
i and

capacitances Csample
i are given by Csample

i � 8NCi and

Rsample
i � Ri=8N.

First the question arises which equivalent circuit

given in Fig. 4 should be preferred to analyse the data

since both yield identical ®t errors and can be

transferred into each other [42]. As an example.

Fig. 5. Relative error of the ®t using one of the two equivalent circuits of Fig. 4 compared to the FE-results: (ZreÿZre
®t)/Zre and (Zimÿ Zim

®t)/
Zim, respectively. (a) Average sample (parameters as in Fig. 3). (b) Calculated impedance with the largest ®t error obtained in this work.

Parameters: h/b� 0.15, d/b� 0.7, w/b� 6.3� 10ÿ 4, ebulk� 8e0.
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Table 1 shows the ®t values for a spectrum and some

R, C-values which would have simple meanings:

Rbulk, Cbulk are the bulk values of 1/8 of a basic

element

Rbulk � 8
1

sbulk

h

b2
�15�

Cbulk �
1

8
ebulk

b2

h
�16�

while Rpc is 8 times the resistance between a circular

electrode with diameter d on top of a semi-in®nite

sample and an in®nitely remote counter-electrode

(often called spreading resistance) [43] given by

Rpc � 8
1

sbulk

1

2d
�17�

Cgap is the capacitance one would obtain for a plate

capacitor with the air gap as dielectric calculated as

Cgap �
1

8
egap

b2 ÿ pd2=4

w
�18�

Table 1 clearly indicates that only for the serial

connection of two RC-elements at least two of the

elements have a simple meaning: R1 and C1 turn out to

be always identical to the values of a perfectly

contacted sample (Rbulk and Cbulk). Thus in the

following all spectra are analysed via the equivalent

circuit I in Fig. 4.

The values of R1 and C1 can be attributed to a

perfectly contacted bulk and show no dependence on

the contact geometry while R2 and C2 are determined

by the contact geometry (and the materials para-

meters). In the following we demonstrate how R2 and

C2 depend on the various parameters and how a rough

estimation of these values is achieved.

(a) The Contact Geometry Resistance R2

First, the relation of R2 and the bulk conductivity sbulk

will be discussed. The dc-value of the impedance

Ro� 0 is the sum of R1 and R2. Due to the identity of

Rbulk and R1 the resistance R2 (in the following called

``contact geometry resistance'') is just given by

R2 � Ro�0 ÿ Rbulk �19�
Ro� 0 can be calculated without boundary condition

iii) (see section 2). Consequently neither the

differential equation Eq. (2) nor the boundary

conditions include the materials parameters s and e,
and the dc potential distribution f�x; y; z� is solely a

function of the geometry. Hence, Eq. (10) can be

written as

Ro�0 �
1

sbulk

?fgeo �20�

where fgeo is a purely geometrical factor, viz

fgeo �
1

ÿ �s grad
j
U0

?dA
�21�

Therefore, the resistance R2 is also proportional to

1/sbulk and using Eq. (19) R2 can be calculated as

R2 �
1

sbulk

fgeo ÿ
8h

b2

� �
�22�

This means, that R2 always exhibits the same

conductivity dependence as R1 andÐfor a tempera-

ture-independent geometryÐalso the same

temperature dependence as experimentally found in

many examples for grain boundary contacts [22,26±

30] or electrode contacts [5,18,39]. That has also

been deduced from intuitive models, however here

the precise correlation has been made clearer.

To discuss R2 as a function of the geometrical

parameters we use the length b of a basic element to

Table 1.

Ra 37.02� 109O R1 20.00� 109O Rbulk 20.00� 109O
Rb 64.15� 109O R2 17.02� 109O Rpe 20.00� 109O
Ca 32.4� 10ÿ 18F C1 35.2� 10ÿ 18F Cbulk 35.2� 10ÿ 18F

Cb 62.2� 10ÿ 18F C2 399� 10ÿ 18F Cgap 350� 10ÿ 18F

RajjRb 23.47� 109O

Fit parameters according to the equivalent circuits of Fig. 4 for the impedance spectrum of 1/8 of a basic

element of a sample (Fig. 2d), calculated by the ®nite element method, with the following geometrical

and materials parameters: h� 100mm, b� 20 mm, d� 2mm, w� 1.26mm, sbulk � 10ÿ 6 1/(Ocm),

ebulk � 8e0. RajjRb means parallel connection of Ra and Rb. The symbols Rbulk , Cbulk , Rpc and Cgap are

de®ned in the text.
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normalize the other geometrical quantities w, h and d.

As can be seen in Table 1 the resistance R2 is at least

similar to the point contact resistance Rpc. In Fig. 6 it

is demonstrated in how far Rpc can be used as an

approximation for R2 considering the ratio R2=Rpc as a

function of geometry. (The normalized point diameter

d/b and the normalized sample thickness h/b are the

relevant parameters for R2.) As illustrated in Fig. 6a,

R2=Rpc is close to unity for small point contacts

(d/b5 1) but decreases with increasing d/b. This is

Fig. 6. Contact geometry resistance R2 normalized with respect to Rpc as a function of the relative point diameter d/b (a) and the relative

sample height h/b (b). The ®gure illustrates the limits of the approximation R2 � Rpc.
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Fig. 7. Capacitance C2 normalized with respect to the gap capacitance Cgap as a function of the relative point diameter d/b (a), the relative

gap thickness w/b (b) and the bulk permittivity ebulk (c). The ®gure illustrates the similarities but also the differences between C2 and Cgap.
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valid for all sample thicknesses (h) considered. On

the other hand R2=Rpc is almost independent of the

normalized sample thickness as long as the samples

are not too thin (compared to the point distance).

Thus for a rough estimate of the in¯uence of the

current constriction due to the contact ``points'', the

relation

R2 � Rpc �23�

can be used as long as the sample is not very thin and

the ``points'' are not too large compared to the

distance of the contact points. Using Eq. (23) and

R1 � Rbulk, the approximation

R2

R1

� 1

2

b

d

b

h
�24�

allows us to assess how far the contact geometry

resistance R2 plays a role with respect to the bulk

resistance. A more accurate estimate of the factor fgeo

is given in [44,45].

(b) The Capacitance C2

As already seen from Table 1 C2 is close to Cgap. This

turns out to be the case for the entire parameter range

considered in this contribution (see Fig. 7). However,

C2 is not identical to the gap capacitance and shows a

non-trivial dependence on the other parameters. For

small ``points'' (d/b5 1) C2 depends only slightly

on d/b, for larger ``points'' it surprisingly increases

while the corresponding gap capacitance decreases.

Consequently the ratio C2=Cgap increases with

increasing point diameter (Fig. 7a). Although the

dependence on the gap thickness w shows again a

close relationship to Cgap (Fig. 7b) the varying ratio

C2=Cgap for increasing gap thickness w contradicts an

identi®cation of C2 with Cgap. Beyond that C2

depends slightly on the bulk permittivity (Fig. 7c)

emphasizing that a simple interpretation of C2 is not

possible. However, similar to R2 the capacitance C2

can be approximated by

C2 � Cgap �25�
as long as d/b is not close to unity.

Fig. 8. Impedance spectra for three samples of different gap thickness w and bulk permittivity. All other parameters are the same for the

three spectra: sbulk � 10ÿ 6 1/(Ocm), h� 100mm, b� 20 mm, d� mm. The shape of the spectra switches from two to one semicircles.
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Fig. 9. Ratio of the relaxation times for different relative gap thickness w/b (a), relative point diameter d/b (b) and bulk permittivities ebulk.

The ratio t1/t2 is normalized with respect to the approximation 2ebulk=egapwd=b2 (Eq. (26)).
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(c) The Relaxation Time t2

A further question is whether or not the in¯uence of

the contact geometry resistance is always visible as a

second semicircle in the complex impedance plane.

Figure 8 exemplarily shows that varying the gap

thickness w and the bulk permittivity ebulk can lead to

a change from two to one semicircle. (Of course the dc

resistance remains unchanged.) Therefore as the last

interesting parameter for estimating the consequence

of a porous electrode on the impedance, the ratio of

the relaxation times ti � Ri=Ci is considered. It

indicates whether or not the contact geometry

resistance is re¯ected by a second semicircle. Using

the approximations according to Eqs. (23) and (25)

the ratio t1/t2 can be estimated as

t1

t2

� ebulk

egap

2
w

b

d

b
�26�

As shown in Fig. 9 the values given by Eq. (26)

differÐrelatively speakingÐfrom the exact values

t1/t2 even less than R2 from Rpc and C2 from Cgap do

(deviations partially cancel). Thus for the entire

parameter range considered in this contribution

(besides d/b close to 1) Eq. (26) yields a satisfying

estimate of the relation time of the second semicircle.

According to Eq. (26) particularly large bulk

permittivities could lead to a single semicircle in the

complex impedance plane, the meaning of which

could be easily misunderstood by that a considerable

change of the total resistance due to current

constriction is present. In such cases the obtained

capacitance is no longer the bulk capacitance and can

be even lower than Cbulk.

4. Impact on Further Laterally Inhomogeneous
Contacts

In section 3 a laterally constant gap thickness w was

assumed and the calculations showed that the

capacitance C2 and the relaxation time t2 strongly

depend on w. Consequently a laterally variable gap

thickness will in¯uence the shape of the spectra. As

calculated for two dimensions [38] an electrode bent

between two contact regions leads to a depression of

the contact geometry semicircle and thus to a

frequency dependent capacitance.

As already mentioned in the Introduction, three-

phase boundary experiments in solid state ionics are

also characterized by laterally inhomogeneous con-

tacts. However, here a more complicated situation is

met: it is not the entire contacted area which is

reversible for dc current but only a narrow ring close

to its edge. As a ®rst approximation the rest of the

contacted area can be regarded as a very thin

insulating layer (blocking electrode). Consequently a

further boundary condition of the kind of Eq. (13) has

to be introduced for this part. Thus for dc potential the

current constriction is even more pronounced while

for higher frequencies the very thin insulating layer at

the contacted area is short-circuited via displacement

current and a situation similar to the one considered

in this paper is to be expected. For high frequencies

the entire electrode should be current-carrying and a

high-frequency semicircle with values identical to the

bulk values should be observed. The situation is even

more complicated by the presence of an additional

polarization (e.g., charge transfer) at the three-phase-

Fig. 10. Cross section of the basic element for a single ``grain

boundary'' with insulating gaps corresponding to the similar

element for a porous electrode in Fig. 2c. The problem is

symmetrical and can be reduced to the element in Fig. 2c as long

as w5 d is valid.
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boundary. In [40] an example of a laterally inhomo-

geneous contact with additional electrode polarization

is discussed in two dimensions.

As shown in Fig. 10 the results given in this paper

are also valid for grain boundary contacts with

insulating inclusions. In order to ``produce'' a

partially contacted grain boundary, the electrode

material is replaced by material of the same phase.

As long as the gap thickness is much smaller than the

point diameter the impedance of this ``bridge'' can be

neglected and the resulting overall impedance is just

twice the impedance of the related porous electrode.

This highlights again the fact that R2 is not a

consequence of the ``bridge'' between the two

crystals but occurs even for negligible ``bridge''

thickness w.

5. Conclusions

By three-dimensional ®nite element calculations it

could be shown that porous electrodes on electro-

ceramics can lead to two relaxation times in the

impedance spectra (two semicircles in the complex

impedance plane). Compared to two-dimensional

calculations [38,39] the constriction effects are even

more pronounced in three dimensions while qualita-

tive differences are not observed. A serial connec-

tion of two RC-elements enables a simple interpre-

tation or estimation of the elements for a steplike

electrode.
* The high-frequency resistance and capacitance are

identical to the values of a perfectly contacted

sample (as long as a ®t using two serial RC-

elements is possible).
* The low-frequency resistance R sample

2 is propor-

tional to the bulk resistivity. In turn, a similar

temperature dependence of the resistances of both

semicircles in the complex impedance plane

indicates the existence of geometrically imperfect

contacts. However, identical activation energies

are not suf®cient for such an interpretation: A

depletion layer at the interface may yield the same

result in some cases [32].
* The low-frequency resistance can roughly be

approximated by R sample
2 � 1/(2Ndsbulk)

(N� number of contacts, d� point diameter).
* The low-frequency capacitance C sample

2 depends

on the geometrical parameters as well as on the

bulk and gap permittivity. However, it can be

roughly approximated by the gap capacitance

C sample
2 � egapA/w (A� gap area, w� gap thick-

ness).

Thus, the magnitude of the contact geometry

resistance as well as the corresponding relaxation

time can be predicted and a tool to estimate the

in¯uence of porous electrodes onto the overall

impedance is given.
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